	(5 (9 (3))	واللالال - المواد - الموان جزيد
Mansoura University	ETTA	Second Term
Faculty of Science		. Third Level
Physics Department		Date : June 2012
Subject: Physics		Course: Phys. 329
Course: Phys. 329; Molecula	ir Spectra	Full Mark:: 80 Marks

[1]-(A) Convert the following spectroscopic quantities as indicated; b-) 3×10^{14} Hz to cm⁻¹ to Hz a-) 0.3 nm to μm d-) 3x10⁸ Hz c-) 10 cm^{-1} to m e-) 3.33×10^4 cm⁻¹ to Hz [10 Marks] (B) The wavelength of a radiation absorbed during a particular spectroscopic transition is found to be $5 \,\mu m$. Calculate the energy change during this transition. ($c = 3x10^8 \text{ m.s}^{-1}$, $h = 6.63x10^{-34} \text{ j.s.}$) [5 Marks] [5 Marks] (C) Explain what we mean by a persistent line. [2]-Write a short note about; (A)- The population of the energy levels and its influence on the line intensity [8 Marks] of emitted spectra [7 Marks] (B)- Internal standard element. [5 Marks] (C)- The resolving power of an instrument [3]-(A) Which of the following molecules will show a microwave rotational spectrum : Br₂, HBr, CH₄, CH₃Cl & SF₆ [10 Marks]

(B) Derive an expression gives the wavenumbers of the different possible transitions between the energy levels of a real diatomic rotator. [10 Marks]

	Best	Wishes & Have A Go	od Luck	
Examiners:	1- Dr. Moha	med MANSOUR	2- Dr. Nabil	KINAWY
b-)	Self absorption d	luring atomic emission	spectral analysis	
a-)]	Different possibl	e interferences during s	pectral analysis	[6 Marks]
[5]-(A) A m and 10 so unce spec (B) Disc	olecule undergoo two excited state econds and 0.1 so rtainty in the exc tral lines in hertz suss briefly each	es spectroscopic transiti es. If its lifetime in the f econd in the second one cited state energy levels of the following items ;	on between the irst excitation st , calculate the a and the width o	ground state ate is pproximate f the associated [8 Marks]
respec a-) I b-) T	ctively, then find 3 , I , & r for this he $(\mathbf{j} + 1) \rightarrow ($: molecule. j) for each of theses th	ree lines.	[9 Marks] [3 Marks
(B) The for spect Given	ond strength dete ollowing wavenu rum of the 1 H 79 H the masses of th	ermination. Imbers are for three rota Br molecule; 84.544 cm le H & Br atoms as 1.67	ntional spectral 1 ⁻¹ , 101.490 cm ⁻¹ 3x10 ⁻²⁷ kg &131	[8 Marks] ines in the & 118.435 cm ² .03x10 ⁻²⁷ kg

Mansoura University Faculty of Science Physics Department		Second semester Third level : Physics Date : 28/6/2012	
Subject: Physics		Time allowed : 2 hours	
Course (s): Theoretical Reactors (Phy 328) F		Full Mark: 80 Mark	
Answer three Questions Only: Each Questions (28.3) Mark			

Answer the following Question : (30 Marks)

[1] a- Derive the time-dependent diffusion equation using Fick's rule. [15] Marks

b- Solve diffusion equation in spherical geometry for thermal neutrons. Consider distribution in an infinite homogeneous medium for a shell source $\delta(r-r_0)/4\pi r^2$. **[15] Marks**

Answer two Questions only: Each Questions (25) Marks

[2] a- Discuss the boundary conditions for complete solution the time-dependent diffusion equation. [10] Marks

b- Discuss the critical condition and derive the geometric buckling of a hemispherical reactor
[15] Marks

[3] Discuss the iteration method which is used in solving the neutron diffusion equation for one dimensional problems.

[25] Marks

[4] Discuss the Multigroup method which are used to solve the energy-dependent problems.

[25] Mark

With our best wishes Examiners:

۱ ـ أ.د. السيد عبد العاطى الوكيل
۲ ـ أ.د. محمد مدكور

المستوى للالك فنريط رمفاعلات نظرية (ف ٢٠٠)

Mey a _ _ / My _ _ . فريا , الم ال- ف

Mansoura University	Academic Level: 3 rd Level
Faculty of Science	Program: Physics
Physics Department	2 nd Term Exam: 11 June 2012
Subject: Phy. 327	Time Allow: 2 hours
Physics: Polymer Physics	Full Mark: 80 Marks

Answer (ALL) Questions:

1) A- Describe one method use to study the thermal Analysis of polymer. [10 Mark]

B- What are the difference between the physical state of polymer and the Phase. [10 Mark]

2) Discuss in details the first and the second order phase transitions in polymer. [20 Mark]

3) Compare between:

a- Thermoplastic and Thermosets polymer.

b- Cis- and Trans- isomerism.

c- Branched and Crosslinked polymer.

d- Atactic and Isotactic polymer.

e- glass-transition temperature and Ceiling temperature.

4) A- Write briefly on:

- Four factors affecting on the glass-transition temperature.

- Effect of temperature and pressure on polymerization.

- Electrical conductivity of polymer.

B- Define the polymerization. Explain the Ionic polymerization. [8 Mark]

"With Good Luck"

Examiners: 1- Prof. Dr. Eman Sesa.

2- Dr. Maysa Ismail.

6 - ¹

[12 Mark]

[20 Mark]

Faculty of Science Mansoura University Physics Department

Final Exam in Physics Fine Magnetism May 2012 Time : 2 Hours Full Mark: 80 Marks

rais añosandio -, Lint

Answer the following questions Question 1(each item 6 Marks)

- 1. List the different applications of ferromagnetic material.
- 2. What does NMR Phenomenon mean? Sketch a diagram represent the two ways of nucleons transition under the effect of an external magnetic field and radiofrequency.
- 3. Prove that ferrous ions are the most responsible for ferrimagnetic properties of ferrites (Fe₃O₄)
- 4. What does magnetic domain means. Sketch a diagram represent bloch function or bloch wall
- 5. Discuss the different types of magnetic materials
- 6. Estimate what does upfield and downfield shifts
- when an external magnetic field is applied on ferro- ferri paramagneticand diamagnetic material, the spins will be aligned, sketch diagrams represent each case.

Question2) Which of the following expression is true (2 Marks for each item)

- 1. Chemical shift interaction of Q^4 is lower than that of Q^2 of SiO₂ groups
- 2. Non-bridging bonds can shield the atomic nuclei of silicon easily
- 3. Amorphous materials are characterized with their higher values of chemical shift
- 4. Q⁰ characterizes lose silicate units.
- 5. The origin of magnetism lies in the orbital and spin motions of electrons
- 6. Ferromagnetic and ferrimagnetic materials are usually what we consider as being magnetic (ie., behaving like iron).

- 7. Diamagnetic substances are composed of atoms which have net magnetic moments
- 8. the atoms or ions in the paramagnetic material have not a net magnetic moment due to unpaired electrons in partially filled orbits.
- 9. Ferromagnetic materials exhibit parallel alignment of moments resulting in large net magnetization even in the absence of a magnetic field
- 10. At normal temperatures and in moderate fields, the paramagnetic susceptibility is small

Question 3) Complete \ or choose the correct(2 Marks for each item)

- 1. The magnetization in ferromagnetic materials is (saturated-increasing reduced) in moderate magnetic fields and at (room- high temperature)
- 2. Diamagnetic materials posses -----magnetization
- 3. Intrinsic magnetism may be due to ------ while technical magnetism is due to ------
- 4. Above the Curie temperature, the ferromagnet is ----- and below it, ---
- 5. ferromagnets can retain a memory of an applied field once it is removed. This behavior is called -----
- One of the most important atoms with (unpaired –Paired) electrons is iron. However, the individual magnetic moments (do not interact – interact) magnetically, like diamagnetism,
- 7. The entropy is a measure of the ----- of a system, the larger its disorder, the higher its entropy.
- 8. (Iron iron oxides) can posses (ferromagnetic Ferrimagnetic) order
- 9. The magneto- caloric effect is based on the fact that at a fixed temperature the entropy of a system of magnetic moments can be ------ by the application of a magnetic field.

With best Dr. G. El-Damrawi

الم توى المال - فرط د _ فيرط را فيات (م) (ف ٢٥)

Mansoura University Faculty of Science Physics Department Subject: Physics		Second semester Third level : Physics Date : 21 /6/2012 Time allowed : 2 hours
Course (s): Mathematical physic	cs (2) (Phy325)	Full Mark:: 80 Mark
Answer the following Question	: (30 Marks)	
[1] a- What is the solution to the	BVP	
PDE $u_t = u_{xx}$	$0 < x < 1, 0 < t < \infty$	
BCs $u(0,t)=0$, $u(0,t)=0$	$(1,t)=0 0 < t < \infty$	
and IC $u(x,0) = \sin(2\pi x) + \frac{1}{2}$	$-\frac{1}{3}\sin(4\pi x) + \frac{1}{5}\sin(6\pi x)$ ($0 \le x \le 1$ (20 marks)
b- Transform		
$u_t = u_{xx}$ 0	$< x < 1, 0 < t < \infty$	
$\int u(0,t) = 0$		
with BC's	$0 < t < \infty$	
	0 < i < ∞	/
$\left[\mathcal{U}_{x}(1,t) + h\mathcal{U}(t) \right]$	(1, t) = 1	
and IC. $u(x,0) = s$	$\sin(\pi x) \qquad 0 \le x \le 1$	
into a new problem with zero	BCs?	(10 Marks)
Answer two Questions only: Ea	ch Questions (25) Marks	
2) Solve the Non-homogeneous	PDE's Problem:	
PDE $u_t = u_{xx} + \sin(\pi x)$	$(2\pi x) = 0 < x < 1, 0 < t < \infty$	
BCs $u(0,t)=0$, $u(0,t)=0$	$(1,t)=0 0 < t < \infty$	
and IC. $u(x,0) = 0$	$0 \leq x \leq 1$	
by using the eigenfunction –	expansion method	(25 marks)
3) Consider a large container of	liquid that is insulated on the side	es. Suppose the liquid has an
initial temperature of u_0 and	that the temperature of the air abo	ove the liquid is zero. Using the
Laplace transform to find the	temperature of the liquid at vari-	ous depths of the container at
DDE un = u		
$PDE u_t = u_{xx}$	$0 < x < \infty, 0 < t < \infty$	
BC $u_x(0,t)-u(0,t)-0$	$0 < 1 < \infty$	
$1C. u(x,0) - u_0$	U < X < ∞	
Notes: $\mathcal{K}^{-1}\left[\frac{1}{s}\right] = 1,$	$\mathcal{K}^{-1}\left[\begin{smallmatrix} -\sqrt{s} & x(\frac{1}{s}) \end{bmatrix} = \left[erfc(x/2)\right]$	√t)
And $\mathscr{X}^{-1}\left[\begin{array}{c} -\sqrt{s} & x \\ \sqrt{s} & (\sqrt{s} & +1) \end{array} \right]$	$] = erfc (\sqrt{t} + x/2\sqrt{t})e^{(x+t)}$	(25 marks)
4) Solve the following problem b	by means of the Fourier transform	1
$u_t = \alpha^2 u_{xx}$	$-\infty < x < \infty, 0 < t < \infty$	
$\mathbf{L} \mathbf{C} \qquad \mathbf{u} (\mathbf{x} \mathbf{O}) = e^{-x^2}$		(05
1.C. $u(x,0) = e$, -	$-\omega - x - \omega$,	(25 marks)
	مدخور	

٣ مرك - فرك وفرية (ف ٢٢٠)

Full Mark:: 80 Marks

Mansoura University Faculty of Science Physics Department Time allowed : 2 hours		Second Term (May 2012) Level : Third Program : Physics Course Code : Phys323 Date : 14/6/2012
---	--	---

Course Title : Nuclear Physics (2)

Answer **THREE** Questions Only:

السؤال الأول اجباري

[1a] – Discuss the methods to evaluate r_0 which depend wholly on the nuclear force. [10] Marks [1b] – Define the quantum numbers I, j and m_i and give in table the relation between

them and their capacities I = 0 to I = j. [10] Marks

[1c] - Discuss the ways of coupling of the individual nucleon orbital and spin motions. [10] Marks

[2a] - Study the magnetic dipole moment of the nucleus containing Z protons and N neutrons classically and quantum mechanically. [10] Marks

[2b] - Prove that the electric quadrupole moment of an ellipsoidal nucleus with major axis b and minor axis a is given by $Q = (2/5) Z (b^2 - a^2)$ using Legendre polynomial.

[10] Marks

[2c] - Define the parity of the nucleus. Represent this in Cartesian and spherical polar coordinates. When parity is conserves and non-conserved. [5] Marks

[3a] - List the evidences for the shell structure and explain the role of the neutron capture cross section with examples . [10] Marks

[3b] - Study the spin-orbit coupling model and give in table assembly of nucleons in substates according to strong spin-orbit interaction. [10] Marks

[3c] - Find the ground-state angular momentum of (a) $_7N^{15}$ (b) ${}_{19}K^{39}$. [5] Marks

[4a] – With reasonable physical considerations, find the magnitude of the attractive potential responsible for nuclear force. [15] Marks

[4b] - Discuss this statement : "The experimental and theoretical work indicates that the nucleon-nucleon forces are not simple. It looks as if many different types of forces are acting at the same time". [10] Marks

لجنة التصحيح :

۱.د / على حسن الفراش ۱.د.م/ أحمد أبو العلا أحمد

المستور الثالث فنرسط . في الموادغر المساورة من ٣ ٢

Mansoura University	-11111117-	Second Semester (June 2012)
Faculty of Science		Exam Type (Final):
Department of Physics		3rd Year (Physics)
Course Code: Phys. 322		Time: Two Hours
Title: Non-crystalline Solids	CHERREN BELLER	Full Mark: 80 Mark

Answer the <u>first</u> question and <u>any other one</u>.

1- a:	Compare between the structure of Na_2O-SiO_2 and $Na_2O-B_2O_3$ glasses.	[9 Mark]
b:	Explain how a crystalline structure can be transformed to a non-cry	vstalline one.
	Discuss the factors affecting this process.	[8 Mark]
b:	A glass has a molar formula 0.06Na ₂ O·0.13CaO·0.19Al ₂ O ₃ ·0.62SiO ₂ .	Its density is
	2.533 g/cm ³ . Calculate the concentration of structural units per unit volu	ume of glass.
	(Molecular mass = 62 g/mol for Na ₂ O, 56 g/mol for CaO, 102 g/mol for .	Al ₂ O ₃ and 60
	g/mol for SiO ₂ , Avogadro number is 6.022×10^{23} mol ⁻¹).	[9 Mark]
2-	Write a brief report on the electric conduction in glass.	[27 Mark]
3- a:	Explain how all the atoms and ions affect the specific heat of a glass.	[13 Mark]
b:	The density is 2.33 g/cm ³ for the glass $30Li_2O.70SiO_2$ (mol%) and it is	2.205 g/cm ³
	for vitreous SiO ₂ . Calculate the volume of the Q_{3Li} unit. (Atomic mass	$= 1.153 \times 10^{-23}$
	g for (Li), 2.658×10^{-23} g for (O) and 4.665×10^{-23} g for (Si).	[14 Mark]
, 		

أطيب التمنيات: أ.د. حمدى دويدار لجنة التصحيح: أ.د. حمدى دويدار - أ.د. أحمد حمزه عرابي

الم يوالنات - فالم - حوام الليونية (ف ١٢٢١) Mansoura University Second semester Third level : Physics Faculty of Science Physics Department Date: 7/6/2012 Subject: Physics Time allowed : 2 hours Course : electronic circuits (Phy321) Full Mark:: 80 Mark nswer The Following Questions 1- a) Derive the condition required for stable biasing of the transistor circuit shown in figure (1-a). b) The Zener diode used in the regulator circuit of figure (1-b) has the following data : $I_{zk} = 1 \text{ mA}$, $I_{zM} = 540 \text{ mA}$, $r_z = 3 \text{ ohms and}$ (Vz=15 volts at I_{zT} =160 mA) .Determine the output voltage V_{out} at I_{zk} and at I_{zM} then, determine the minimum value of R_L that can be used . R_{F} 201 RB figure (1-a) figure (1-b) figure (3) figure (2

 2. a) Derive the condition required for stable operating point of the transistor circuit shown in figure (2).

- b) Derive an expression for the output voltage of the operational amplifier circuit in figure (3,), then determine the value of R_F which make the output voltage equal the average value of the input voltages.
- 3 a) Derive an expression for the voltage gain of the inverting operational amplifier.
 - b) Determine the overall minimum and maximum gain of the two stage amplifier circuit shown in figure (4), where $R_1 = R_3 = 33$ K,

 $R_{2} = R_{4} = 8.2 \text{ K}, R_{C_{1}} = R_{C_{2}} = 3.3 \text{ K}, R_{E} = 1 \text{ K}, R_{E1} = 60, +9 \text{ V}_{Cc} = 15 \text{ V}$ $R_{E2} = 0 \text{ To } 940 \text{ ohm } \& \beta_{dc} = \beta = 175$ $R_{1} = \frac{1}{22 \text{ K}} + \frac{1}{22 \text{$

4 a) Derive an expression for the voltage gain of the non - inverting operational amplifier.

b) The transistor in figure (4-b) has the following maximum ratings :
V_{CE(max)} = 25 V, I_{C (max)} = 200 mA, P_{D(max)} = 0.5 W. Determine the maximum value to which V_{CC} can be adjusted without exceeding a rating .which rating would be exceeded first ?

(rc. 6) 4-19235 - , List

