

Mansoura University **Faculty of Science Geology Department**

Final Theoretical Exam. 1st Term 2015-2016

Date: - 03/01/2016 Time: - Two Hours Full Mark: - 60 Marks

المستوي الثائي

برنامج جيولوجيا البترول والتعدين

برنامج نوعي مميز

الورقة الامتحانية : - ج ٢٢٢

المقرر: - الصخور النارية والمتحولة

IGNEOUS & METAMORPHIC PETROLOGY

ANSWER FOUR QUESTIONS FROM THE FOLLOWINGS : -

Each Question = \oMarks (Each part = 3.75

Marks)

1- Compare between the Followings:-

A-Dyke Forms & Shield Volcano Forms

C- Slate & Hornfels

B- Porphyritic & Ophitic Textures

D- Gneissose & Schistose Textures

2- Explain the Followings:-

A- Graphic & Mermykitic Textures

C- Gneiss & Schist

B- Laccolith & Batholith Forms

D- Granulose & Slaty Cleavage Textures

3- Identify and Describe the Followings:-

A- Amygdular & Trachytic Textures

C- Marble & Serpentenite

B- Monzonite & Granite

D- Cataclasite & Mesh Textures

4- Write in detail on the Followings:-

A- Lapilli Tuff & Dacite

C- Magmatic Processes

B- Types of Metamorphism

D- Characteristics of magma

5-Write short notes on the followings:-

A- Where does magma form on Earth?

C- Stratovolcanoes & Tephra Cones

B- Protoliths of metamorphic rocks

D- Factors that Control Metamorphism

Good Luck & Best Wishes

لجنة التصحيح: - د. شعبان مشعل * - د. أحمد شلبي

Mansoura University Faculty of Science Department of Geology

Petroleum Geology and Mining Program 2nd Level, First Term Exam,
Sedimentary rocks (G 221)
Time allowed: **TWO Hours**Academic Year: 2015-2016
Date: 10/1/2016

Please answer ALL questions

	20 ma	rk	s)
1- It is difficult to differentiate detrital from diagenentic clay particles.	()
2- Sandstones derived from source area rich in volcanic rocks may contain more plagioclas	se		
than potash feldspars.	()
3- Ooids with asymmetric coats can form under high energy conditions.	()
4- Elongated gravel-size clasts tend to become oriented parallel to the current flow du	ring		
stream transport.	()
5- Matrix in lithic arenites may be of a secondary origin.	()
6- The presence of substantial micrite in a limestone commonly indicates deposition un	nder		
low-energy conditions.	()
7- Positive skewed sand samples are weighed toward the coarse end-member.	(()
8- Fecal pellets are produced by a variety of organisms that feed on organic-rich mud.	(()
9- The migration of sand waves under conditions of net deposition gives rise to norm	mal (()
graded bedding.			
10- Roundness of a sediment particle is the ratio of the average radius of corners and edge	es to		
the radius of minimum inscribed circle.	(()
2- Complete the following sentences	(20 ma	ark	(s)
1- The meteoric regime includes the unsaturated zone above the water table and	the sat	tura	ted
zone below the water table.			
2- Intergranular porosity is commonly reduced by		dur	ing
diagenesis.			
3- Effective porosity of a rock is the ratio between			
4- Diagenetic reactions in the telegenetic zone occur after			
5- The framework grains in most sandstones are dominated by,		8	and
entonintumor and the second se			
6- The most common cements in beach rocks are			

Mansoura University
Faculty of Science
Department of Geology

Petroleum Geology and Mining Program 2nd Level, First Term Exam, Sedimentary rocks (G 221) Time allowed: **TWO Hours** Academic Year: 2015-2016 Date: 10/1/2016

Batc. 16/1/2010	
7- Boundstones may be divided into and	
8- Ultrastable rock fragments in oligomict conglomerates are dominated by	
and clasts.	
9- The principle types of cements in the phreatic zone of the meteoric regime in	clude
and cements.	
10- Euogenetic stage of diagenesis starts after and ends before	burial.
3- Choose the suitable item between parenthesis	(20 marks)
1- Most carbonate-building organisms use both and	in their
skeletal structure (calcite, ankerite, aragonite, dolomite).	
2- Carbonate grains that are structurally similar to ooids but are larger than 2 mm a	are called
(cortoids, peloids, pisoids, intaclasts).	
3- Accessory minerals in sandstones include and	(feldspars, rock
fragments, heavy minerals, coarse mica).	
4- Sandstones may have a matrix of and (silt, cement, rock fi	ragments, clay).
5 and are most useful structures for paleocurrent	analysis (flute casts,
slumping, cross bedding, trace fossils).	
6- Post-depositional sedimentary structures may include	(graded bedding,
groove casts, convolute bedding, slumping).	
7- Petromict conglomerates contain significant amounts of and	rock
fragments (ultrastable, metastable, unstable).	
8- Diagenetic reactions in the mezogenetic zone start after and e	end before
(shallow burial, deep burial, uplift).	
9- Sandstones that contain more than about 25% feldspars are called	(lithic sandstones,
feldspathic graywackes, arkoses).	
10- Allochems generated by erosion of older carbonate rocks exposed on land ou	tside the depositional
basin are called (cortoids, fecal pellets, intraclsts, extraclasts).	
W	ith my best wishes
	. Adam El Shahat لحنة التم

Manoura University
Faculty of Science
Petroleum Geology & Mining Program
Autumn Semester- 2015
Course Title: Soil Mechanics
Course Code: Tc-221

Dr.MohamedGamal Date: 13- Jan. 2016 Final Exam Time: 120 mins. Max. Degrees: 70

Q-1

(15 degrees)

A- Define: Plastic limit – Well graded soil – Consistency index - Structural water – Permeability. (5 degrees)

B-The weight of soil sample is 20.0 kg and its volume is 0.009 m^3 . The weight of solid part is 18.0 kg, if $G_s = 2.70$, find, water content, void ratio, porosity, degree of saturation, the saturation unit weight and dry unit weight. (10 degrees)

Q-2

(30 degrees)

A-

For the shown wall with smooth vertical back and sand backfill, determine the magnitude and point of application of the active earth pressure per meter length of the wall.

B- A silt soil sample 6 cm diameter and 20 cm long was tested in a falling head permeameter. The time elapsed for the head to drop from 42 to 27 cm is 150 min. The stand pipe has a cross sectional area of 2.0 cm^2 . After test the sample was splitted and was found to include a sandy silt lamination 5.0 cm thick. If the coefficient of permeability of the silt is 9×10^{-5} cm /sec., find the permeability of the lamination. (18 degrees)

Q-3

(25 degrees)

A- Define the soil compaction, what are the types of compaction? also, what are the factors affecting compaction? (10 degrees)

B-

The following results were obtained from a standard compaction test. Plot the compaction curve. Find the maximum dry density and corresponding optimum moisture content. Plot also zero and 5 % air voids curves. Take $G_s = 2.68$.

Moisture content - %	10,1	11.8	14.2	16.3	17.6	18.9
Bulk density – t/m ³	1.817	1.912	2.05	2,093	2.07	2.045

(15 degrees)

Geophysics -1 final Exam (2^{ed} Level petroleum and Mining Geology) 2015/2016 برنامج البترول وتعدين ج ۲۲۱ (المستوى الثاني) ۲۲۱۲ صباحا

Ans	swer the Following Questions	(Total mark 60)
1- Cor	mpare between the following:	(20 mark)
a	Active and passive geophysical methods	b- Qualitative and quantitative interpretation
c	Apparent and true resistivity.	d- Gravity and magnetic methods.
<u>2- Co</u>	omplete the following:	(10 mark)
a-	The earth magnetic field is from	andorigin.
b-	Free-air and Bouguer corrections consists ar	e calledcorrections.
c-	Magnetic susceptibility of igneous rocks is	than sedimentary rocks.
d-	Total intensity F of T equals to F=	
e-	Bouguer anomaly means the	gravity measurements.
f-	Intensity of magnetization equals to $I =$	or I=
g-	The Self potential method (SP) measure the	variation of theof the earth.
h-	DC resistivity measurements are usually use	d explorations
i-	Magnetic susceptibility sedimentary rocks	than igneous rocks.
j-	Gravity method based on measuring	of the earth which the earth's poles.
3- Re	ewrite the following in the correct form:	<u>(10 mark)</u>
a.	Gravity measure amplitude and direction of	the earth's gravity filed.
b.	Proton magnetometer measure the vertical co	omponent of the earth' magnetic field.
c.	c. SP is an active method and measures potential difference of injected DC current into the earth.	
d.	d. Normal correction is applied for the elevation effect.	
e.	e. Magnetic anomaly amplitude is affected by density contrast	
f.	f. Amplitude gravity anomaly increase with increasing depth of the source body.	
g.	g. Acceleration (g) does not change with latitude	
h.	n. Magnetic susceptibility of igneous rock is greater than basic rocks.	
i.	True and apparent resistivity are equals for l	heterogeneous medium
j.	Geophysics is the study of the hidden parts	of the earth by direct observation.
4- W	Vrite on TWO of the following:	<u>(20 marks)</u>
a.	. Operation of fluxgate magnetometers.	
b.	. Operation of unstable gravimeters.	*
c.	e. Electrodes arrays for DC resistivity survey.	

Mansoura University Faculty of Science Geology Department Time: 2 hours

Full Mark: 60 degree

First Term Exam (January 2016) Second Level Petroleum & Mining Geology Program Subject: G-224 (Geology of Mineral Dep.)

Date: 20-1-2016

Geology Of Mineral Deposits

Answer the Following Questions:-

Question One: Answer the following:

(A) Give a suitable scientific term

(10 Degree)

- 1- Ore minerals are younger than the country rocks.
- 2- Primary ore minerals.
- 3- Pyrite> Sphalerite> Chalcopyrite> Galena.
- 4- The least ratio of metal in the ore make it exploited.
- 5- Ranges of uses from the ore.

(B) Give examples of mineral deposits

(15 Degree)

- 1- Carbonate deposits.
- 2- Phosphate deposits.
- 3- Uranium deposits.

- 4- Coal deposits.
- 5- Residual mineral deposits.

Question Two: Write short notes with examples of ore minerals

(15 Degree)

- 1- Concentration by fractional crystallization of magma.
- 2- Concentration by sedimentation processes.
- 3- Geochemical classification of elements.

Question Three: Write briefly:

(20 Degree)

- 1- Cavity filling and metasomatic replacement deposits.
- 2- Role of volatile constituents in the residual solution.
- 3- Factors controlling contact metamorphism and metasomatic deposits.
- 4- Factors controlling deposition of carbonates in sea water.
- 5- Causes of magmatic differentiation.

Exam Committee*:

Prof. Dr. Amin Gheith* Prof. Dr. Salah Ayad

Final Exam of 2nd level of students Program: Petroleum geology and Mining

Course: Structural Geology

Code: Geo-204 Date: 24/1/2016 Time: 2 hours

Your answer should be like (11-k) For example

Mansoura University Faulty of Sciences Department of Geology

Hall: 25

No. Students: 7

Answer all the followings

Q1. Match phrases from the column A to that convenience with the column B,

Column A	Column B		
1. It is an extensional structural features developed by gravity sliding	a. Book-shelf structures		
2. The scarp has an opposite sense to the dip direction of the fault plane.	b. Dextral strike-slip fault		
3. The displacement is oriented perpendicular to ramps in	c. Roof fault		
4. The fold thrust belt is assembledof a staking nappe	d. Normal fault		
5. Omission of a stratigraphic unit in a well log indicates passing the well through a	e. Foreland		
6. The hanging wall is displaced updip of the fault plane in	f. Detachment fault		
7. The displacement of faulted blocks is clockwise in	g. fault-line		

synthetic normal faults

8. The upper fault bounding duplexes

- 10. The surface separates the autochthonus from allochthnous blocks
- h. Frontal ramp

(20 marks)

- 9. The structure in which the hanging wall is faulted with parallel and planer i. Growth faults

 - j. Reverse fault
- Q2. Compare between each of the following: Sketches are necessary (20 marks)
 - 1. The hanging wall and the footwall in normal and reverse faults.
 - 2. Drag and rollover folds
 - 3. The foreland and hinterland dipping duplexes.
 - 4. The Domino and imbricate fan-rollover fold models.
 - 5. Fan structure and duplexes.
- **Q3.** Write short notes on the followings: (20 marks)
 - 1. Classification of folds.
 - 2. Water saturation controls the mechanical behavior of rocks.
 - 3. The uses of Mohr circle to define the angle between the conjugate fault planes.

بسم الله الرحمن الرحيم

Mansoura University Faulty of Science Geology Department

Date: 27 / 1 / 2016.

Final Term Exam (January, 2016) Second Level,

Petroleum & Mining Geology Program Subject: Hydrogeology (Geol. 223)

Time allowed: 2 hours. Full Marks: 60 marks.

Answer the following questions:	
 Question One: Discuss only ONE of each of the following A. Methods for drilling water wells. B. The main different types of the aquifers. C. Analytical methods of pumping test data. D. Groundwater evaluation for industrial purposes. E. Graphical presentations of hydrochemical analyses. 	: (20 marks "4x5")
 Question Two: A. Compare between the following: 1. Specific yield and specific retention. 2. Gaining (effluent) and losing (influent) streams. 	(20 marks) (8 marks "4x2")
B. What are the principle causes of recharge and disch	arge? (4 marks)
C. What are the pumping test parameters and aquifer	parameters?(3 marks)
 D. What do the following symbols refer to: E.C., K, Q, r_o, S, Δs, T, T_o, T.S.S. and 	(5 marks"0.5x10") T.D.S.
Question Three:	(20 marks)
A. What are the conditions to:1. Find artesian flow.2. Apply an ideal tracer.	(5 marks "2.5x2")
B. Give simple sketches for the following:1. Hydrologic cycle.2. Groundwater well.	(5 marks "2.5x2")
 C. Put true or false for the following: 1. Bar-graph is used to compare between sever: 2. Groundwater moves much more slowly than 3. Geohydrology differs only by its greater emp 4. Groundwater serves as important resource in 5. Sulin diagram is used to determine hypothet 	surface water. bhasis on geology. n all climatic zones.
 D. Complete the following: 1. From Darcy's law; the Flow Rate (Q) = 2. Groundwater is developed for use through: 3. The major ion constituents in groundwater a 4. The water-bearing formations are classified 5. The most important groundwater reservoirs 	, & are:,, & into:,, &

